AI for Healthcare

  • Course level: Intermediate


Learn to build, evaluate, and integrate predictive models that have the power to transform patient outcomes. Begin by classifying and segmenting 2D and 3D medical images to augment diagnosis and then move on to modeling patient outcomes with electronic health records to optimize clinical trial testing decisions. Learn how to build algorithms that process the data collected by wearable devices and surface insights about the wearer’s health. Cover the sensors and signal processing foundation that are critical for success in this domain, including IMU, PPG, and ECG that are common to most wearable devices, and learn how to build three algorithms from real-world sensor data. Finally, build an algorithm that uses data collected from wearable devices to estimate the wearer’s pulse rate in the presence of motion. By the end of the course, you will have the skills to analyze an EHR dataset, transform it to the right level, build powerful features with TensorFlow, and model the uncertainty and bias with TensorFlow Probability and Aequitas.