fbpx
5.00(2)

Machine Learning with Python from Scratch

  • by Handson
  • Course level: Intermediate

Description

Mastering Machine Learning Algorithms including Neural Networks with Numpy, Pandas, Matplotlib, Seaborn and Scikit-Learn

Machine Learning is a hot topic!  Python Developers who understand how to work with Machine Learning are in high demand.

But how do you get started?

Maybe you tried to get started with Machine Learning, but couldn’t find decent tutorials online to bring you up to speed, fast.

Maybe the information you found was too basic, and didn’t give you the real-world Machine learning skills using Python that you needed.

Or maybe the information got bogged down in complex math explanations and was too difficult to relate to.

Whatever the reason, you are in the right place if you want to progress your skills in Machine Language using Python.

This course will help you to understand the main machine learning algorithms using Python, and how to apply them in your own projects.

But what exactly is Machine Learning?

It’s a field of computer science that gives computers the ability to “learn” – e.g. continually improve performance on a specific task, with data, without being explicitly programmed.

Why is it important?

Machine learning is often used to solve tasks considered too complex for humans to solve.  We create algorithms and apply a bunch of data to that algorithm and let the computer process (execute) the algorithm and search for a model (solution).

Because of the practical applications of machine learning, such as self driving cars (one example) there is huge interest from companies and government in Machine learning, and as a result, there are a a lot of opportunities for Python developers who are skilled in this field.

If you want to increase your career options, then understanding and being able to work with Machine Learning with your own Python programs should be high on your list of priorities.

What will you learn in this course?

For starters, you will learn about the main scientific libraries in Python for data analysis such as Numpy, Pandas, Matplotlib and Seaborn. You’ll then learn about artificial neural networks and how to work with machine learning models using them.

You obtain a solid background in machine learning and be able to apply that knowledge directly in your own programs.

What are the Main topics included in the course?

Data Analysis with Numpy, Pandas, Matplotlib and Seaborn.

The machine learning schema.

Overfitting and Underfitting

K Fold Cross Validation

Classification metrics

Regularization: Lasso, Ridge and ElasticNet

Logistic Regression

Support Vector Machines for Regression and Classification

Naive Bayes Classifier

Decision Trees and Random Forest

KNN classifier

Hyperparameter Optimization: GridSearchCV

Principal Component Analysis (PCA)

Linear Discriminant Analysis (LDA)

Kernel Principal Component Analysis (KPCA)

Ensemble methods: Bagging

AdaBoost

K means clustering analysis

Regression model and evaluation

Linear and Polynomial Regression

SVM, KNN, and Random Forest for Regression

RANSAC Regression

Neural Networks: Constructing our own MLP.

Perceptron and Multilayer Perceptron

And don’t worry if you do not understand some, or all of these terms. By the end of the course you will know what they are and how to use them.

Why enrolling in this course is the best decision you can make.

This course helps you to understand the difficult concepts of Machine learning in a unique way. Rather than just focusing on complex maths explanaitons, simpler explanations with charts, and info displays are included.

Many examples and genuinely useful code snippets are also included to make it even easier to learn and understand.

After completing this course, you will have the necessary skills to apply Machine learning in your own projects.

Benefits of the course :

  • Have an understand of Machine Learning and how to apply it in your own programs
  • Understand and be able to use Pythons main scientific libraries for Data analysis – Numpy, Pandas, Matplotlib and Seaborn.
  • Understand and be able to use artificial neural networks
  • Obtain a solid understand of machine learning in general
  • Potential for a new job in the future.

Requirements :

  • Basic knowledge of Python
  • Basic knowledge of Linear Algebra
  • No previous experience in Machine learning, or any of the various libraries are needed.

Student Feedback

5.0

Total 2 Ratings

5
2 ratings
4
0 rating
3
0 rating
2
0 rating
1
0 rating

The course is very in depth, but doesn't tell you the reasoning behind some of the code, only what it does. Also some of the code is beginning to get out of date and may not be continued (but still usable as of 6/Sep/2021)

Course was very thorough. Explained the architecture thought process of a stable and complete machine learning package/ software

Free

You have successfully subscribed to the newsletter

There was an error while trying to send your request. Please try again.

Handson School of Data Science will use the information you provide on this form to be in touch with you and to provide updates and marketing.

You have successfully subscribed to the newsletter

There was an error while trying to send your request. Please try again.

Handson School of Data Science will use the information you provide on this form to be in touch with you and to provide updates and marketing.